
COMP9311 Lab02

Background

We wish to build a simple database for a company which has a number of

departments. Each department has a manager and a mission statement,

which is defined by a number of key words (e.g. commitment, service,

innovation, etc.). The company also uses numeric codes to identify

each department. For each employee, we need to know their name and tax

file number (for payroll purposes), and also the total number of hours

that they work each week. Employees may work in several departments,

and the percentage of their total hours spent in each department needs

to be recorded; they have to work in at least one department. Each

department has a manager, and they work full-time in that role.

A possible ER design for this company is as follows:

Use this design as the basis for the rest of the Lab.

create table Employees (

tfn char(11),

givenName varchar(30),

familyName varchar(30),

hoursPweek float

);

create table Departments (

id char(3),

name varchar(100),

manager char(11)

);

create table DeptMissions (

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Questions

Which employee works the longest hours each week?

What is the family name of the manager of the Sales department?

How many hours per week does each employee spend in each

department?

Constraints

1. All TFN's are of the form 'ddd-ddd-ddd ', where each d represents

a single digit (Take a look at the PostgreSQL Manual for details on

Pattern Matching and Regular Expression)

Using check keyword to add constraint.

department char(3),

keyword varchar(20)

);

create table WorksFor (

employee char(11),

department char(3),

percentage float

);

15

16

17

18

19

20

21

22

23

SELECT *

FROM employees

WHERE hourspweek = (SELECT Max(hourspweek)

FROM employees);

1

2

3

4

SELECT familyname

FROM departments d,

 employees e

WHERE d.manager = e.tfn;

1

2

3

4

SELECT w.employee,

 w.department,

 e.hourspweek * w.percentage/100

FROM employees e,

 worksfor w

WHERE e.tfn = w.e mployee;

1

2

3

4

5

6

http://www.postgresql.org/docs/9.3/static/functions-matching.html

Note that, you can change the constraint name by adding constraint

NAME before check

2. Every person has a given name, but may not have a family name (e.g.

Prince)

Using NOT NULL to check that

3. Nobody can work more hours per week than there are hours in a week

(each week has 7*24 = 168 hours), it is meaningless to work

negative hours per week

Using check keyword to add constraint.

4. All Departments codes consist of exactly three digits

Using check keyword to add constraint.

5. Two Departments cannot have the same name or the same manager

create table Employees (

tfn char(11) check (tfn ~ '[0-9]{3}-[0-9]{3}-[0-

9]{3}'),

givenName varchar(30),

familyName varchar(30),

hoursPweek float

);

1

2

3

4

5

6

create table Employees (

tfn char(11) check (tfn ~ '[0-9]{3}-[0-9]{3}-[0-

9]{3}'),

givenName varchar(30) NOT NULL,

familyName varchar(30),

hoursPweek float

);

1

2

3

4

5

6

create table Employees (

tfn char(11) check (tfn ~ '[0-9]{3}-[0-9]{3}-[0-

9]{3}'),

givenName varchar(30) NOT NULL,

familyName varchar(30),

hoursPweek float check (hoursPweek >= 0 and hoursPweek

<= 168)

);

1

2

3

4

5

6

create table Departments (

id char(3) check (id ~ '[0-9]{3}'),

name varchar(100),

manager char(11)

);

1

2

3

4

5

Using unique keyword to add constraint

6. The percentage of time that an employee works in a department must

be greater than zero. An employee may spend up to and including

100% of their time in a given department

Using check keyword to add constraint.

Add the primary key and foreign key for tables.

1. Add primary key for Employees

2. Add primary key for Departments

3. Add foreign key for DeptMissions

DeptMissions is composite attributes, therefore the department and

keyword composite as primary key.

create table Departments (

id char(3) check (id ~ '[0-9]{3}'),

name varchar(100) unique,

manager char(11) not null unique

);

1

2

3

4

5

create table WorksFor (

employee char(11),

department char(3),

percentage float check (percentage > 0.0 and percentage

<= 100.0)

);

1

2

3

4

5

create table Employees (

tfn char(11) check (tfn ~ '[0-9]{3}-[0-9]{3}-[0-9]

{3}'),

givenName varchar(30) not null,

familyName varchar(30),

hoursPweek float

check (hoursPweek >= 0 and hoursPweek <= 168),

primary key (tfn)

);

1

2

3

4

5

6

7

8

create table Departments (

id char(3) check (id ~ '[0-9]{3}'),

name varchar(100) unique,

manager char(11) not null unique,

primary key (id)

);

1

2

3

4

5

6

4. Add foreign key for WorksFor

Test your constraint

This worked ok before, when there was no constraint checking, but you

may be distressed to find that it now generates errors. Think about

the dependencies between tables and work out how to rearrange the

statements in the data.sql so that the data can load ok.

Challenge 1

Here's something to think about if you found the above exercise too

easy.

Exercise: Consider how you might implement the following constraints:

no worker can have more than 100% of their time allocated

To test these out you'll need to try to insert additional tuples that

violate these constraints. For the first case, you could use the

following insertion:

create table DeptMissions (

department char(3)

constraint ValidDepartment references

Departments(id),

keyword varchar(20),

primary key (department,keyword)

);

1

2

3

4

5

6

create table WorksFor (

employee char(11)

constraint ValidEmployee references Employees(tfn),

department char(3)

constraint ValidDepartment references

Departments(id),

percentage float

constraint ValidPercentage

check (percentage > 0.0 and percentage <= 100.0),

primary key (employee,department)

);

1

2

3

4

5

6

7

8

9

10

dropdb company

createdb company

psql company -f schema.sql

psql company -f data.sql

1

2

3

4

Challenge 2

DEFERRABLE The DEFERRABLE parameter controls whether the constraint

can be delayed to take effect. And INITIALLY DEFERRED will only be

checked at the end of the transaction.

If there are two tables, a and b, a has foreign key from b, b has

foreign key from a. No matter which table is imported first, an error

will be reported. Because of the existence of the foreign key

constraint, these insert operations are violated. Unless we do not

check this first, wait until both tables are entered into the database

and then check the constraints.

insert into WorksFor values ('747-400-123','003',10);1

CREATE FUNCTION check_worksfor_insert () returns TRIGGER

AS $$

DECLARE

 percentage1 FLOAT;

 percentage2 FLOAT;

BEGIN

SELECT SUM(percentage)

INTO percentage1

FROM worksfor

WHERE employee = NEW.employee;

 percentage2 = percentage1 + NEW.percentage;

IF percentage2 > 100 THEN

 RAISE

 EXCEPTION

'work percentage cannot exceed 100 percent';

END IF;

RETURN NEW;

END;

$$ LANGUAGE plpgsql;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

CREATE TRIGGER sum_of_percentage BEFORE INSERT OR UPDATE

ON worksfor FOR EACH ROW EXECUTE PROCEDURE

check_worksfor_insert();

1

2

create table Employees (

tfn char(11)

constraint ValidTFN

check (tfn ~ '[0-9]{3}-[0-9]{3}-[0-9]{3}'),

givenName varchar(30) not null, -- must have a given

name

1

2

3

4

5

familyName varchar(30), -- some people have only

one name

hoursPweek float

check (hoursPweek >= 0 and hoursPweek <= 168), -

-7*24

primary key (tfn)

);

create table Departments (

id char(3) -- [[:digit:]]

== [0-9]

constraint ValidDeptId check (id ~ '[[:digit:]]

{3}'),

name varchar(100) unique,

manager char(11) not null unique

constraint ValidEmployee references

Employees(tfn) DEFERRABLE INITIALLY DEFERRED,

primary key (id)

);

alter table Employees

add column worksIn char(3) not null

constraint ValidDepartment references Departments(id)

DEFERRABLE INITIALLY DEFERRED;

create table DeptMissions (

department char(3)

constraint ValidDepartment references

Departments(id),

keyword varchar(20),

primary key (department,keyword)

);

begin;

insert into employees values ('111-111-

111','YANG','YANG',40.0,'100');

insert into departments values ('100','Administration','111-

111-111');

commit;

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

